Steel Damper

 

 

 

Add, modify or delete the properties of Steel Damper elements.

 

 

 

From the Main Menu select Boundary > Link > General Link > Seismic Device Properties > Steel Damper

 

 

 

To enter or add new properties of Steel Damper elements, click the   button.

 

To modify the properties of Steel Damper elements already defined, select a name from the list of Steel Damper property, click the button and change appropriate data entries.

 

To modify the properties of Steel Damper elements already defined, select a name from the list of Steel Damper properties, click the button and change appropriate data entries.

 

 

Name

 

Enter the name of Seismic Device.

 

 

Hysteresis Properties

 

Hyst. Model: Select the Hysteretic model of the steel damper.

Initial stiffness (K0): Enter the initial stiffness of the steel damper.

 

 

Yield Strength

 

P1: Enter the first yield strength of the steel damper.

 

 

Stiffness Factor

 

α1: Stiffness coefficient after first yielding in compression and tension side. (It is defined as α1 * K0.)

α2: Stiffness coefficient after second yielding in compression and tension side. (It is defined as α2 * K0.)

 

 

Hysteresis Parameters

 

β : Exponent in Unloading stiffness Calculation

θ : Strength Factor (1.0 ≤ θ, Default value is 1.5)

γ : Stiffness Ratio (0 < γ < 1)Select the Hysteretic model for damping coefficient.

 

 

Mounting Parts Stiffness

 

Kb: Input the additional stiffness depending on the installation of the damper.

 

 

Drawing of Curve by Hysteretic Model

 

 

Figure 1. Degrading Bilinear Model

(1) K1 = K0

 

(2) K2 = Kr = K0
    Here,

       For Steel, β = 0

       For Concrete, β = 0.4

 

(3) K3 = α1*K0

 

 


Figure 2. Low Yielding Strength Steel Model(LY2)

(1) K1 = K0


(2) K2 = α1*K0

 

(3) K3 = α2*K0

 

 

 

 

 Figure 3. Low Yielding Strength Steel Mode (LY3)

(1) K1 = K0


(2) K2 = α1*K0

 

(3) K3 = α2*K0

 

 

(A) P = P1 – γK0 dy

 

(B) P = -P1 + γK0 d’y  (d’y=dy)

 

(C) P = θP1 + α2 K0 d


(D) P = -θP1 – α2K0 d

 

 

 

 

 Figure 4. Steel Isotropic-Kinematic Hardening Model

(1) K1 = K0


(2) K2 = α1*K0